DESIGN GUIDELINES

FOR

CITY OF CALGARY FUNDED BUILDINGS

2010
Prepared By:
The City of Calgary / Corporate Services / Infrastructure Services / Corporate Engineering

Reviewed By, with appreciation:
Kelly Pratt, The City of Calgary, Corporate Properties & Buildings
Russ Goliathly, The City of Calgary, Corporate Properties & Buildings
Pierre Ferronato, The City of Calgary, Calgary Fire Department
Dave Holem, The City of Calgary, Calgary Police Service
Steve Donnelly, Calgary Public Library
Thomas Hansen, The City of Calgary, Recreation

Edition / revision history:
First issue: March 19, 2010
Corporation Engineering,
Infrastructure Services,
The City of Calgary

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intent</td>
<td>1-0</td>
</tr>
<tr>
<td>2. Guidelines Limitations</td>
<td>2-0</td>
</tr>
<tr>
<td>3. Other City of Calgary & Civic Partner Design Requirements</td>
<td>3-0</td>
</tr>
<tr>
<td>4. General Consultant Requirements</td>
<td>4-0</td>
</tr>
<tr>
<td>5. Sustainability</td>
<td>5-0</td>
</tr>
<tr>
<td>6. Civil</td>
<td>6-0</td>
</tr>
<tr>
<td>7. Building Envelope</td>
<td>7-0</td>
</tr>
<tr>
<td>8. Structural</td>
<td>8-0</td>
</tr>
<tr>
<td>9. Mechanical</td>
<td>9-0</td>
</tr>
<tr>
<td>10. Electrical</td>
<td>10-0</td>
</tr>
<tr>
<td>11. Acoustics and Vibration</td>
<td>11-0</td>
</tr>
<tr>
<td>12. Environmental / Hazardous Materials</td>
<td>12-0</td>
</tr>
<tr>
<td>13. Architectural and Interior Space Planning</td>
<td>13-0</td>
</tr>
</tbody>
</table>
SECTION CONTENTS

<table>
<thead>
<tr>
<th>1.1 Intent</th>
<th>1-1</th>
</tr>
</thead>
</table>

Last revised March 19, 2010
1.1 Intent

.1 To apply to design of all new vertical infrastructure (e.g. buildings, relocatable structures such as trailers, other facilities, and their associated sites) and to design of additions, upgrades and renovations to existing vertical infrastructure.

.2 To aid consultants, Corporate business units and civic partners in developing appropriate technical designs for City of Calgary and funded civic partner vertical infrastructure.

.3 To aid in evaluation and acceptance of designs by Corporate Engineering for its partners. One of the goals is to avoid unnecessary re-design time and effort, and avoidable changes during design, construction or post-occupancy.

.4 To be followed with reasoned judgement as to applicability to specific and atypical situations.

.5 To provide minimum requirements on components that affect serviceability, durability, sustainability, and anticipated life expectancy of a facility; to maximize functionality and efficient operation; and to avoid unnecessary expense (capital and operational) and premature obsolescence of facilities.

.6 To provide proven solutions to, and avoidance of, design and construction aspects that are problematic.

.7 Where Corporate business units or civic partners do not have internal engineering expertise, then Corporate Engineering would be pleased to offer advice and guidance.

END OF SECTION
SECTION CONTENTS

2.1 Guidelines Limitations ... 2-1
2.1 Guidelines Limitations

.1 These guidelines are intended to supplement, and not to replace or duplicate, the requirements of codes including Alberta Building Code, national codes (e.g. plumbing, gas, electrical), National Building Code Commentaries, CSA and industry design standards, and City of Calgary Development & Building Approvals in respect of permits and inspections. Individual City business units and civic partners may also have their own specific design requirements, which consultants should obtain and abide by along with these guidelines.

.2 These guidelines and receipt of any other information or documentation from City of Calgary employees in no way relieve consultants from the professional obligation to meet all applicable regulatory codes and standards.

.3 Consult with Corporate Engineering where these guidelines are seen as inappropriate or contrary to reasonable design solutions for special situations.

END OF SECTION
Section 3 Other City of Calgary & Civic Partner Design Requirements

SECTION CONTENTS

3.1 Other City of Calgary & Civic Partner Design Requirements .. 3-1
3.1 Other City of Calgary & Civic Partner Design Requirements

Refer to the most current version of these other documents for requirements specific to certain types of related facilities, structures, and systems:

.1 Corporate Engineering – *City of Calgary Sustainable Building Policy*.
.2 Advisory Committee on Accessibility - *City of Calgary Access Design Guidelines* (for barrier-free accessibility).
.3 Land Use Planning - *The Calgary +15 System Consolidation of Design Guidelines*.
.4 Calgary Transit - *Transit-Friendly Design Guide* (for site layout and building access).
.5 Parks – *Development Guidelines and Standard Specifications Landscape Construction*.
.6 Corporate Properties & Buildings – *Space Planning Standards and Guidelines*.
 – *CAD Standards Manual*
.7 Recreation – *Calgary Recreation Facilities Division Design Guidelines*.
.8 Calgary Fire Department – *Fire Station Design Standards*
.9 Development and Building Approvals - *Fire Stopping Service Penetrations in Buildings*.
.10 Contracts Committee - *Guidelines for the Preparation of Tender Documents and Contract Administration*.
.11 Utilities and Environmental Protection Land Information and Mapping - *Design Guidelines for Development Permits and Development Site Servicing Plans*.
.12 Wastewater and Drainage – *Effective Erosion and Sediment Control*; as it pertains to the site associated with the facility.
.13 Wastewater and Drainage – *Stormwater Management and Design Manual*.
.16 Roads – *Standard Specifications Road Construction*.
.17 Infrastructure Services – Sustainable Building Best Practices

END OF SECTION
Section 4 General Consultant Requirements

SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Owner Requirements and Design Intent</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Design Reviews</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3 Schematic Design Brief</td>
<td>4-3</td>
</tr>
<tr>
<td>4.4 Coordination</td>
<td>4-6</td>
</tr>
<tr>
<td>4.5 Design Process</td>
<td>4-7</td>
</tr>
<tr>
<td>4.6 Site reviews</td>
<td>4-7</td>
</tr>
</tbody>
</table>
4.1 Owner Requirements and Design Intent

1. Consultant should confirm with the client owner group the specific project requirements including but not limited to the following:

 1. Required design service life of the facility.
 2. Project schedule and capital budget.
 3. Project documentation requirements, including format for submittals, training materials, and reports. Consideration should be given to use of electronic format documents and records where appropriate.
 4. User requirements.
 5. Occupancy requirements and schedules.
 6. Quality (durability) requirements of materials and construction.
 7. Triple bottom line priorities and goals (environmental, social, economic).
 8. Performance requirements (i.e. energy use, water use).
 9. Utility Metering requirements for City of Calgary owned and operated facilities.
 10. Green building rating system target (refer to Sustainable Building Policy).
 11. Other specialized requirements (accessibility, indoor environmental quality, acoustical, aesthetic, security, community, information technology) as applicable.
 12. Operation and maintenance criteria for the facility that reflect the Owner’s expectations, including equipment and system maintainability expectations, including capabilities of operating and maintenance personnel.
 13. Commissioning, turnover and process scope and budget (as applicable).
 14. Training requirements for Owner’s personnel.
 15. Applicable Codes and Standards.
 16. Relevant City of Calgary policies and guidelines (e.g. Sustainable Building Policy, Green Housekeeping Guideline, Sustainable Environmental and Ethical Procurement Policy).
 17. Warranty requirements.
.2 The owner’s requirements should be documented as a brief by the prime consultant and provided to the owner representatives (including project manager) and design team (including the commissioning agent as applicable).

.3 The Owner Project Requirements brief should be updated to reflect changes in the owner’s requirements and circulated as above.

.4 The Owner Project Requirements brief should be referred to throughout the design process, particularly at decision points within the process.

4.2 Design Reviews

.1 If City of Calgary business units or Civic partners do not have the appropriate internal technical engineering resources, then Corporate Engineering should be involved in conceptual and schematic design meetings, integrated design charrettes, detailed consultant design meetings, and stakeholder/consultant meetings in order to establish the basis of design. These will aid in understanding design rationale.

.2 Submit design information for technical review by Corporate Engineering at the following design stages:

.1 Schematic Design Brief or Design Development Report (Basis-of-Design Document);

.2 75%-complete drawings and specifications;

.3 95%-complete drawings and specifications;

.4 Tender drawings and specifications;

.5 Issued For Construction drawings and specifications (if magnitude of addenda warrant issue).

.3 All design review comments will be channelled through the project manager for The City’s coordinating business unit or civic partner.

.4 Address review comments in a timely manner to avoid any requirement for significant redesign.
4.3 Schematic Design Brief

The Schematic Design Brief is to address the following:

.1 Facility Program:
 .1 Change in use of existing areas.
 .2 Building areas (as measured per BOMA guidelines).
 .3 Provisions for future expansion.

.2 Scope of Work: extent and areas of:
 .1 Demolition.
 .2 Renovation.
 .3 Upgrade.
 .4 New construction and addition.

.3 Schematic Plans:
 .1 Site plan, with building location, utility locations, and firefighting access.
 .2 Building floor plans.

.4 Building Codes review.

.5 Outline descriptions of systems and components, including rationale for any replacement of existing systems, and any energy and water efficiency initiatives:
 .1 Architectural / structural:
 a. Abnormal geotechnical conditions & ramifications e.g. deep foundations, structural slabs on grade, sulphate resistance.
 b. Structural:
 ● Roofs, floors, foundations, and vertical and lateral support systems and materials.
 ● All live, superimposed dead, snow, rain, ponding, wind and seismic design loadings.
 ● Importance Factors (both S&W and E).
 ● Whether W and E loadings will be designed through dynamic or static analysis.
 c. Building envelope system, including roofing, walls, windows, doors, insulation, air barriers, and vapour retarders.
 d. Exterior walls and finishes.
 e. Interior walls and finishes.
 f. Floor finishes.
 g. Ceiling finishes.
 h. Acoustics.
 i. Handicapped access provisions and any alterations.
Section 4 General Consultant Requirements

j. Site:
 - site and building grades, drainage, and extent of any re-grading.
 - parking.

k. Roof fall protection intentions.

.2 Mechanical:
 a. Codes and Standards.
 b. Design Conditions.
 c. Site Services; gas, water, sanitary, storm.
 d. Plumbing: proposed fixtures.
 e. Fire protection:
 - Sprinkler system.
 - Modification of existing standpipe and hose system.
 - Fire extinguishers.
 f. Heating system:
 - Primary heating source.
 - Terminal units; fin tube radiation, radiant panel, radiant floor.
 - Zoning; reheat coils.
 - Pumping arrangement.
 g. Cooling system:
 - Primary cooling source.
 - DX Cooling.
 - Chiller.
 h. Supply air handling:
 - Central system air handling units:
 - Makeup air.
 - Mixed return/supply air system.
 - Heat reclaim device.
 - Dedicated outdoor air system.
 - Furnaces.
 - Natural ventilation.
 - Humidification: wet cell; gas fired; or other.
 - Room air distribution:
 - Mixed air.
 - Displacement.
 i. Exhaust systems.
 j. Controls:
 - DDC; pneumatic; electric.
Section 4 General Consultant Requirements

k. Extent of communication to central monitoring area.
l. Schematic Mechanical drawings.
m. Preliminary HVAC equipment list.

.3 Electrical:
a. Electrical Standards and Guidelines.
b. Power and distribution Systems: description of existing conditions, modification and new components of the systems listed below:
 - Main service: load summary, voltage, main breaker size, service entrance, main/sub electrical room location.
 - Central distribution panelboard and branch panelboards.
 - Transient voltage surge suppression protection.
 - Motor Control Center.
 - Transformer (if applicable).
 - Emergency power systems:
 - Generator set (if applicable) size and location.
 - UPS (if applicable).
 - Batteries.

c. Lighting system:
 - Proposed interior and exterior illuminance level and light fixtures at different application areas.
 - Emergency lighting and exit lights.
d. Auxiliary systems: description of existing conditions, modification and new components of the systems listed below:
 - Telephone/data systems.
 - Paging, intercom, and sound systems.
 - Security systems.
 - Fire alarm systems.
 - Broadcast centre and equipment.
 - CCTV (if applicable).
e. Schematic Electrical drawings.
Section 4 General Consultant Requirements

.4 Sustainability:
 a. Triple-Bottom-Line analysis briefly outlining environmental, social, and economic considerations of the project from a site, Calgary as a whole, and the broader context perspectives.
 b. Specify the applicable building rating system as outlined in the Sustainable Building Policy and the target level. Identify date of project registration with the applicable rating system, and key contact (ie. sustainability consultant, architect, owner, other).
 c. Include a preliminary checklist of proposed credits if pursuing certification through the Canadian Green Building Council (CAGBC) Green Building Rating System.
 d. If the project will not be pursuing registration or certification under a rating system, identify which sustainable building best practices will be incorporated into the site planning, building design, construction and operation.

.5 Hazardous materials considerations.

.6 Phasing / sequencing of construction and occupancy.

4.4 Coordination

.1 It is paramount to project schedule and budget success that each consultant, regardless of coordination fee or whether acting as prime consultant or subconsultant, coordinate its work with other disciplines; in particular:

 .1 Structural with building envelope air barrier and vapour retarder paths, continuity and details.
 .2 Architectural, structural, electrical with mechanical ductwork, return air openings, flue and major plumbing and drainage.
 .3 Architectural and structural with major electrical cable horizontal chase requirements.
 .4 Architectural vertical chase requirements for mechanical and electrical items.
 .5 Clearances to architectural and structural elements for services and structural deflections.

Document revision and resubmission will be requested if coordination is found lacking.
Section 4 General Consultant Requirements

.2 Ensure that consultant responsibility is assigned for design and drawing of all facility components e.g. weeping tile / dewatering systems, guardrails, and cladding vertical and lateral support.

.3 Ensure adequate treatment for all envelope penetrations from mechanical and electrical equipment.

.4 Consultants are to obtain from client City business units or civic partners any specific occupant and/or operational requirements e.g. special ventilation, lighting, files loading on floors.

.5 Codes, standards and guidelines referenced are to be latest edition.

4.5 Design Process

.1 Building systems and assembly options are to be presented to the owner and value engineered early in the design process to ensure that the Owners Requirements are met at the lowest cost over the life of the building.

.2 Energy modelling should be used where appropriate to assess design options and optimize building design with respect to energy performance. To best utilize the energy modeller as a resource, a contract should be established early in the design process (i.e. during schematic design). Energy modelling should be approached as:

 .1 An iterative process that involves the whole design team.
 .2 A tool to assess the impact of design decisions on building performance and lifecycle operating costs.
 .3 An input to decision-making on orientation of the building within the site, building massing, balancing of provision of views and envelope performance, and material and equipment selection.

Performing energy modelling only to demonstrate compliance with green building rating systems is not an acceptable practice.

4.6 Site reviews

.1 Corporate Engineering may attend site meetings and conduct site reviews on a case by case basis as requested by the Project Manager or client business unit or civic partner.

END OF SECTION
Section 5 Sustainability

SECTION CONTENTS

Page

5.1 The City of Calgary’s Sustainable Building Policy5-1
5.1 The City of Calgary’s Sustainable Building Policy

.1 Sustainable Buildings:

.1 Sustainable development refers to the ability to meet the needs of the current generation without restricting future generations from meeting their needs. As such, sustainable buildings shall seek to use energy, water, land and material resources efficiently and reduce impacts on the environment and human health.

.2 Use an integrated design approach when designing a sustainable building. An integrated design approach brings together multiple design disciplines (such as architects, engineers, and interior designers), consultants (such as sustainability consultants, energy modelling experts, and commissioning agents), and the owner representatives and building operators. Ideally, building occupants and other user groups are also involved in the process.

.3 In order to achieve a sustainable building, carefully consider site selection, building orientation, and building massing. Maximize the potential of the site by responding to the unique site conditions such as climatic conditions and topography.

.4 Consider passive systems (such as natural ventilation or solar heating) wherever feasible so as to reduce dependence on active systems (such as mechanical heating and ventilation systems).

.5 Design to integrate the built and natural environments so as to enhance green and open space and create connectivity through the urban form.

.6 Make use of design tools such as energy modelling to optimize lifecycle building performance (refer to section 4.5).

.7 The City of Calgary approaches sustainable building within the triple bottom line framework and seeks to evaluate economic, environmental, and social impacts as a part of the decision-making process.

.2 The City of Calgary’s Sustainable Building Policy:

.1 The purpose of The City of Calgary’s Sustainable Building Policy is to ensure planning, design, construction, management, renovation, operation, and demolition of all City-owned and City-financed facilities is carried out:

a. in a sustainable manner and,
b. considering all triple bottom line (TBL) impacts

c. while enhancing The City of Calgary’s reputation as a fiscally responsible municipal government, and addressing the health and well-being of the people who use and occupy these facilities.

.2 Refer to http://www.calgary.ca/docgallery/bu/cityclerks/council_policies/amcw005.pdf for further information on the building rating system targets for various building project types and for procedural information.

.3 Contact the Director of Infrastructure services for interpretation of the Policy.

.3 Sustainable Building Best Practices:

.1 Sustainable building best practices should be incorporated wherever feasible. Sustainable building best practices are identified processes, practices or systems widely recognized as ways of improving building sustainability. A guide to Sustainable Building Best Practices is available from Corporate Engineering.

.4 Project Registration and Certification

.1 The City of Calgary has a corporate membership in the Canada Green Building Council and thus City projects receive a discounted rate for both project registration and certification. Contact Corporate Engineering for further information.

.2 There are numerous LEED Accredited Professionals working for the City of Calgary. Contact Corporate Engineering for more information and to determine if a LEED AP within the City may be available to support the project and certification of the project.

.5 Documentation and Submittals

.1 Green building rating system checklists (e.g. LEED® checklists) should be provided to Corporate Engineering throughout the design process, construction, and commissioning whenever significantly revised.

.2 A copy of the submittals for green building certification (i.e. LEED® submittals including those required for audit regardless of whether or not it is actually requested from the Green Building Council) should be provided to Corporate Engineering (an electronic copy is preferred).

END OF SECTION
SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Retaining Walls</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Grade Surfaces</td>
<td>6-1</td>
</tr>
</tbody>
</table>
6.1 Retaining Walls

.1 These Guidelines apply to retaining walls designed and constructed as part of a building or site development for a building project. For other transportation-related retaining walls, refer to City of Calgary Guidelines For Bridges & Structures and coordinate with Transportation Infrastructure - Bridges and Structures.

.2 For retaining walls higher at any point than 1.0m, engage a geotechnical engineer to provide a geotechnical investigation and report that includes information for design and construction, with the recommendations sealed and signed by a Professional Engineer experienced in this type of structure.

.3 For retaining walls higher at any point than 1.0m, do not use modular blocks with only keying between blocks where there is potential for frost heave, subgrade settlement, differential settlement or other vertical movement that could disrupt keying.

.4 Retaining wall design to take into account: soil pressure; hydrostatic pressure; adjacent structure surcharge loads; adjacent traffic surcharge loads; potential for future slope build-up behind wall; and potential for excavation (e.g. for road or sidewalk replacement, utilities, or plantings) behind wall if tiebacks / deadmen / straps are utilized or in front of wall if passive resisting soil pressure is utilized.

.5 Refer to the Structural Section in these Guidelines for other considerations and requirements.

6.2 Grade Surfaces

.1 All exterior pedestrian surfaces to have a 2% drainage slope.

.2 Allow for long-term settlement of excavation backfill and avoidance of consequent back-drainage in design of grading for sidewalks, plazas, etc., for instance adjacent to basements, trenches and retaining walls. Consider a bridging structural slab in those areas.

.3 Refer to the Structural Section in these Guidelines for other considerations and requirements.

END OF SECTION
SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Codes and Standards</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Design Principles</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3 Insulation</td>
<td>7-2</td>
</tr>
<tr>
<td>7.4 Roofs</td>
<td>7-2</td>
</tr>
<tr>
<td>7.5 Roof Drains and Rainwater Leaders</td>
<td>7-4</td>
</tr>
<tr>
<td>7.6 Detailing</td>
<td>7-4</td>
</tr>
<tr>
<td>7.7 Durability</td>
<td>7-6</td>
</tr>
</tbody>
</table>
7.1 Codes and Standards

.1 New design, additions, upgrades and repairs to conform to or exceed the latest edition of the following codes and standards:

.1 Alberta Building Code.
.2 Alberta Fire Code.
.7 CAN/CSA-A440.4 Window, Door, and Skylight Installation.
.8 CSA-S478 Guideline on Durability in Buildings.
.9 The City of Calgary – Sustainable Building Policy.

7.2 Design Principles

.1 Design a building envelope system for all occupied facilities and other facilities requiring separation from the exterior environment and/or energy efficiency by limiting air, moisture and heat exfiltration and infiltration. There may be some facilities (e.g. storage or equipment sheds) where a full building envelope system is not required: consult with the client business unit or civic partner.

.2 The building envelope design approach generally preferred is the Pressure Equalized Rain Screen Insulated Structure Technique (PERSIST), comprising:
7.3 Insulation

.1 Insulation for a heated facility is to be minimum overall RSI 4.4 (R25) for walls, overall RSI 7.1 (R40) (at minimum for tapered thicknesses) for roofs, and RSI 1.8 (R10) for exposed perimeter foundation elements.

.2 Metal spandrels within curtain walls are to have a minimum RSI 2.1 (R12) insulation.

.3 The overall R-value is to, as described in ASHRAE Fundamentals 2001 Chapter 25, take into account thermal breaks such as Z-girts and framing materials.

.4 Provide protection to insulation or use non-susceptible insulation material where it may be exposed to gasoline or other chemicals causing deterioration (e.g. below an upper parking area) or to sunlight.

.5 Check against incompatibility of materials e.g. plasticized PVC and self-adhering rubberized asphalt flashings

7.4 Roofs

.1 For flat or low-slope roofs, a 2-ply modified bitumen membrane is preferred for durability. Consult with client business unit or civic partner if proposing an elastomeric, built-up or other membrane. Provide a supplementary protective surface for any high-volume pedestrian traffic. Specify an ARCA Warranty Certificate or alternate contractor bonding and extended warranty.

.2 On roof plan(s) indicate high and low point elevations, drainage directions, backslopes, crickets, all drains, all other roof penetrations (e.g. vents, fans, RTU ducts), and all roof-mounted equipment.

.3 Provide minimum 2% roof drainage slopes, including in valleys and across parapets.
.4 Minimum roof slopes for other roofing materials to be as follows:

.1 1 : 3 for triple tab asphalt shingles; to be minimum 25-year interlocking.

.2 1 : 2.4 for cedar shingles.

.3 1 : 2 for cedar shakes.

.5 Provide roof overflow scuppers where there are no internal drains or where there is no alternate flow path for water from a potentially-blocked drain to another drain without ponding overload. Design scupper size to prevent ice blockage. Extend scuppers slightly beyond building face and with drip edge to avoid risk of draining into wall cavity, and avoid draining onto pedestrian routes.

.6 Avoid controlled-flow roof drainage design where possible.

.7 Metal roofing is to be considered to be water-shedding only, and requires a waterproof membrane and drainage below.

.8 Form roof drainage slopes with the structure instead of with tapered insulation, except for backslopes and crickets.

.9 Provide minimum 300mm high curbs at all roof penetrations other than drains.

.10 Attics to be unheated, unless by consultation with the client business unit or civic partner.

.11 Where re-roofing is required prior to its normal life expectancy, investigate the reasons for premature failure prior to re-roofing design, and include remedial measures in the re-design to prevent reoccurrence (e.g. ice damming, inadequate attic venting, poor flashing, etc.).

.12 Do not set mechanical equipment, pipe supports, or concrete pavers directly on roofing: utilize minimum 350mm high curbs for mechanical equipment, or support on high-density polystyrene insulation. Refer to Mechanical guidelines for minimum clearance off roof for large units.

.13 Roof-level glazing is preferred to be by vertical clerestory. Sloped skylights and glazing to be avoided except by consultation with the client business unit or civic partner. Where skylights or sloped glazing are incorporated:

.1 Slope glazing minimum 30 degrees from horizontal.

.2 Air seal connections to curbs and adjacent walls to be fully accessible during construction.
.3 Water that enters the glazing rabbet to be contained within the rabbet and to drain back to the exterior in all seasons without contacting caulked joints or seals.

.4 Provide an interior condensation gutter system, drained where warranted by a high-humidity interior environment.

.5 Glazing seals to be dry mechanically keyed, and not utilizing caulkling or other sealants.

.6 Glazing to be minimum heat-strengthened exterior lite and laminated interior lite for safety.

7.5 Roof Drains and Rainwater Leaders

.1 Provide a removable observation-access panel in fixed ceilings below roof drains.

.2 Locate rainwater leader outlets to avoid draining onto pedestrian and vehicle areas, and to avoid draining or backflow against foundations.

.3 Downspout extensions to be designed to prevent damage or removal during grasscutting or by vandalism (e.g. could use one or series of embedded precast concrete splashpads).

.4 Ensure that rainwater leaders are not subject to freezing within the building (e.g. within perimeter unheated enclosed chases).

7.6 Detailing

.1 Detail to ensure that:

 .1 water, snow and ice can shed completely from exterior surfaces;

 .2 draining water and falling snow and ice do not endanger pedestrians or property;

 .3 roof ice damming is minimized;

 .4 water cannot enter building components as a result of snow and ice build up (e.g. upturn membrane minimum 300mm at upstand walls), or of wind (e.g. at unprotected eaves or open wall assemblies adjacent to roof edges).
.2 Fasteners and connections providing vertical and lateral support to cladding are corrosion-resistant for the design life of the building.

.3 To avoid condensation on interior surfaces, buffer high-humidity interior spaces from the building envelope face or provide adequate ventilation against the interior envelope surface (e.g. at swim pool area glazing), and avoid thermal bridging (e.g. at exposed structural framing).

.4 Air barrier and vapour retarder continuity and installation methods and sequencing must be fully described on design drawings. Provide large-scale and perspective details where needed to explain intent, in particular at:

.1 window and door frames.
.2 services penetrations.
.3 projecting structural members.
.4 wall / roof / parapet, wall / floor, and wall / wall intersections.
.5 deflection and control joints in architectural/structural framing.
.6 galvanic isolation joints between dissimilar materials.

.5 Require and review mock-up or prototypical wall and roof sections with the general contractor and involved trades to ensure that envelope material laps, tie-ins to adjacent materials, and sealing around projections are demonstrated and achievable.

.6 Concealed spaces to be provided with access hatches. Unheated concealed spaces to be vented to the exterior.

.7 Provide a prefabricated sill pan or other means to drain to exterior any water that infiltrates windows and jambs.

.8 Insulation to be in direct contact with the air barrier and to be mechanically fastened to secure substrate. Fasteners must demonstrably avoid compromising the air barrier and vapour retarder integrity.

.9 Windows to meet CAN/CSA A440-series Standards: minimum requirement is double-glazed with at least one low-e surface. Do not use post-applied tinting films
7.7 Durability

.1 The building envelope system to be durable for the construction environmental and traffic conditions and for the life expectancy of the structure, and to be easily constructable with techniques common to the local trades.

.2 Polyethylene vapour barrier and friction-fit batt insulation are not best-practice building envelope materials, especially for non-residential construction.

.3 Exterior surface material and texture considerations to include resistance to vandalism and accidental impact (e.g. balls), resistance to and removal of graffiti (e.g. masonry sealer), and resistance to ultraviolet radiation embrittlement, deterioration and chalking.

END OF SECTION
SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Codes and Standards</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2 Drawings Information</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3 Loads and Analysis</td>
<td>8-4</td>
</tr>
<tr>
<td>8.4 Materials</td>
<td>8-5</td>
</tr>
<tr>
<td>8.5 Soils Considerations</td>
<td>8-7</td>
</tr>
<tr>
<td>8.6 Design Life</td>
<td>8-8</td>
</tr>
<tr>
<td>8.7 Contractor Design</td>
<td>8-8</td>
</tr>
<tr>
<td>8.8 Parking Areas</td>
<td>8-9</td>
</tr>
<tr>
<td>8.9 Detailing</td>
<td>8-10</td>
</tr>
<tr>
<td>8.10 Construction Inspection and Testing Agencies</td>
<td>8-10</td>
</tr>
<tr>
<td>8.11 Antenna-supporting Towers and Structures – General</td>
<td>8-11</td>
</tr>
<tr>
<td>8.12 Antenna-supporting Towers and Structures – New Supports</td>
<td>8–11</td>
</tr>
</tbody>
</table>
8.1 Codes and Standards

.1 New design, additions, upgrades and repairs to conform to or exceed the latest edition of the following codes and standards generally, plus those specifically referenced in following clauses:

.1 Alberta Building Code.
.2 Alberta Fire Code.
.4 CAN/CSA-A23.1 / A23.2 Concrete Materials and Methods of Concrete Construction Methods of Test and Standard Practices for Concrete.
.5 CSA-A23.3 Design of Concrete Structures.
.6 CSA-A23.4 Precast Concrete - Materials and Construction.
.7 CSA-A165.1 Concrete Block Masonry Units.
.8 CSA-A165.2 Concrete Brick Masonry Units.
.9 CSA-A165.3 Prefaced Concrete Masonry Units.
.10 CSA-A179 Mortar and Grout for Unit Masonry.
.11 CSA-A283 Qualification Code for Concrete Testing Laboratories.
.12 CSA-A370 Connectors for Masonry.
.14 CAN/CSA-A438 Concrete Construction for Housing and Small Buildings.
.16 CAN/CSA-G30.18 Billet-Steel Bars for Concrete Reinforcement.
.17 CAN/CSA-G40.20 / 40.21 General Requirements for Rolled or Welded Structural Quality Steel/Structural Quality Steel.
.18 CAN/CSA-G164 Hot Dip Galvanizing of Irregularly Shaped Articles.
.19 CAN/CSA-O86 Engineering Design in Wood, and O86S1 Supplement No. 1.
.20 CSA-O121 Douglas Fir Plywood.
.21 CAN/CSA-O122 Structural Glued-Laminated Timber.
.22 CAN/CSA-O141 Softwood Lumber.
.23 CSA-O151 Canadian Softwood Plywood.
.24 CSA-O153 Poplar Plywood.
.26 CSA-O325 Construction Sheathing.
.27 CSA-O437.0, O437.1, O437.2 CSA Standards for OSB and Waferboard.
.28 CAN/CSA-S16 Limit States Design of Steel Structures, S16S1 Supplement #1, and replacement pages issued June 2003 and December 2003.
.30 CAN/CSA-S269.3 Concrete Formwork.
.31 CSA-S304.1 Design of Masonry Structures.
.33 CSA-S448.1 Repair of Reinforced Concrete in Buildings.
.34 CSA-S478 Guideline on Durability in Buildings.
.35 CSA-W47.1 Certification of Companies for Fusion Welding of Steel.
.36 CSA-W55.3 Resistance Welding Qualification Code for Fabricators of Structural Members Used in Buildings.
.37 CSA-W59 Welded Steel Construction (Metal Arc Welding).
.38 CSA-W178.1 Certification of Welding Inspection Organizations.
.39 CSA-W178.2 Certification of Welding Inspectors.
.40 CSA-W186 Welding of Reinforcing Bars in Reinforced Concrete Construction.
8.2 Drawings Information

1. Include the following design parameters on design drawings, concisely grouped on the first drawing where logical, regardless of whether also included in specifications (for future information if specifications are lost):

 a. Geotechnical design parameters, including allowable bearing pressures, skin friction, and required sulphate resistance.

 b. Structural design parameters, including:

 a. Edition of building code and standards being designed and constructed to.
 b. Design loads, including LL, superimposed DL, snow, rain, ponding, wind and seismic, and their Importance Factors.
 c. Design LL and DL vertical and horizontal deflection limits, and any cambers.
 d. Assumed support points for gravity and lateral loading from curtain walls and other cladding.
 e. Any provisions for future additions.
 f. Required material properties.
 g. Description of load paths (e.g. lateral loads) where not obvious from the framing configuration.
 h. Elements to be designed by contractors, and design criteria (e.g. loadings, load combinations, shoring movement and vibration acceleration limits, adjacent ground movement limits).
 i. Assumptions and requirements for any special construction procedures.
For Parking Areas:

a. The design protection system types, design exposure conditions, and specific building portion for each of those situations.

b. Confirmation of design compliance with CSA-S413 Parking Structures.

For antenna-supporting towers and structures:

b. Corrosion protection measures and details for all required components.

c. Grounding configuration and information.

d. Access climbing and safety information (ladders, platforms, cages, fall-arrest devices).

8.3 Loads and Analysis

1. Discuss with the client business unit or civic partner what Importance Category and Importance Factors for snow, rain, wind and seismic loads are applicable or desired for the particular project. It is typically Low for low-occupancy / storage; High for community, recreation or social centres, or containing sufficient stored quantity of dangerous substances; Post-disaster for essential-service (refer to Code listing); and Normal for other. However, the client business unit or civic partner may wish to elevate the Category of some High or Normal occupancies for emergency-service purposes.

2. Design all floors of office-type occupancy, including upper-storey floors, for minimum 4.8 kPa Live Load plus partition load unless otherwise approved. Include in design loadings for potential alternate uses of facility as advised by client City business unit or civic partner e.g. if heavier live loadings for records storage etc.

3. Mechanical units to be considered as live loads and not dead loads.

4. Unless otherwise directed, design roof Snow loading to include drift and sliding build-up caused by potential adjacent buildings or tree belts, and design wind exposure factor is not to be reduced below 1.0.
.5 Roof water ponding design in multi-bay situations to take into account where Gerber-beam design, unequal spans or other conditions might allow a negative-deflection situation in adjacent bays to contribute water to the ponded bay, and where a roof drain may be plugged. Detail the design ponding loads on the design drawings, if a more severe case in any location than design snow-plus-rain loading.

.6 Design for installation and future replacement of mechanical or other heavy equipment. This may entail knock-out wall panels, removable roof panels, and/or heavy loading on floor travel paths.

.7 In mechanical and other similar equipment rooms, allow for minimum 100mm thick concrete housekeeping pads at any location on the floor.

.8 Include in design loadings for potential additional dead load if roofing, flooring and wall/partition material selections make it probable that future rehabilitations or renovations will add to instead of replace such material. This would include additional parking floor membrane applications.

.9 For major upgrades and renovations of existing buildings, investigate safety and adequacy of existing structure and non-structural attachments with respect to current seismic design loading. Discuss with the client business unit or civic partner whether seismic upgrading is to be considered.

.10 Design for 1:100 return year flood considerations.

.11 Fall Protection: as well as providing typical roof exterior anchor points, coordinate with the client business unit or civic partner whether there is a requirement for interior fall protection anchor points (e.g. for tall truck servicing at Manchester or Fire halls).

.12 Provide design calculations if requested.

8.4 Materials

.1 Constructability: in structural framing material choices, one of the paramount decision-makers is to be consideration of construction sequencing / delays / seasonal requirements and costs e.g. load-bearing masonry could be undesirable if it would delay important framed-in deadline, or requires hoarding/heating, demobilization and remobilization for cladding masonry, etc.

.2 Do not use unbonded post-tensioned concrete reinforcement.
.3 Provide protection for components that may be exposed to spills or leaks of corrosive solutions (e.g. mechanical room floors supporting brine tanks or water softeners).

.4 Guardrail and other structural posts subject to frequent application or spray of de-icing salts; ladders, platforms and covers in areas of continuing moisture exposure such as sumps; and their supporting frames, baseplates and anchor bolts are to be galvanized, stainless steel, or cathodically-isolated aluminum. Connection site-welding is to be avoided. Any galvanizing repairs to be done by metalizing in accordance with ASTM A780 Standard Practice for Repair of Damaged and Uncoated Areas of Hot-Dip Galvanized Coatings. Coordinate with Architect to avoid unnecessary painting, or to ensure compatible finish paint types and surface preparation.

.5 Guardrails prone to vehicle impact and their anchorages, as well as being designed for vehicle impact loads, are to be designed for ease of repair e.g. modular construction, replaceable anchorage connections, and easy replacement of only the damaged components.

.6 Exposed concrete surfaces to be high quality and consistent in colour and texture, with construction joints located in reglets or other architectural details, and formwork ties in a regular pattern and sealed.

.7 Concrete reinforcement within 100mm of surfaces exposed to rain, chlorides or other de-icing chemicals to be galvanized Grade 400W reinforcing steel bars, or alternately stainless steel –clad or FRP upon approval of the client business unit or civic partner. Galvanized steel to conform to ASTM A767/A767M Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement, as modified by The City of Calgary Specification Section 003201 Galvanized Reinforcing steel, and to be fabricated, galvanized, handled and placed in accordance with that same City specification section.

.8 Where galvanized reinforcing steel is used, the chairs, tie wires, nuts, bolts, washers, other devices and miscellaneous hardware used to support, position or fasten the galvanized reinforcement to also be galvanized or to be plastic or plastic-coated. Contact points between galvanized and black reinforcing steel to be separated by a non-conductive material such as rubberized pads or rubber hose rings.

.9 Where concrete curbs, walls, slabs etc. are placed on previously-cast components, these elements to have additional reinforcement of small size and spacing to mitigate shrinkage cracking. Any finishes (e.g. tiling), waterproofing etc. applied to these items are to allow for the inevitable shrinkage cracking.
.10 Supplementary cementing materials (SCM’s) such as fly ash, metakaolin and silica fume are strongly encouraged as partial replacement for concrete cement.

.1 SCM’s can provide concrete property advantages in increased compressive strength and in durability through decreased permeability, mitigation of alkali-silica reaction, reduced shrinkage, increased sulphate resistance and increased scaling resistance.

.2 SCM’s can contribute to sustainability goals such as LEED credits for recycled content, regional materials and durable building.

.11 Consider specification of concrete properties at 56 days instead of 28 days where not crucial for immediate strength, for greater flexibility in end-use mix designs.

.12 For all HSS and pipe members subject to freezing:

.1 Provide drain holes at lowest point.

.2 Provide seals (e.g. neoprene) around all fastening penetrations exposed to water.

.13 For galvanized structural, pipe or plate steel shapes (not including reinforcing bars), specify provision of a 10-year guarantee against corrosion or defects in the galvanizing quality or workmanship. Under the guarantee, the supplier will repair or replace (including shipping) any components that fail during the guarantee period.

.14 Provide drain holes in galvanized components, to facilitate proper galvanization and drainage of condensation moisture.

.15 Design wood framing to allow for vertical shrinkage of sawn lumber floor joists, studs and columns without causing noticeable unevenness or sloping from adjacent non-shrinking components such as engineered-wood beams or masonry / concrete shafts.

8.5 Soils Considerations

.1 Design exterior apron slabs to resist frost heave where this could cause binding of doors or water drainage against the perimeter wall.
.2 Where a floor slab will be constructed over a significant depth of backfill or replacement fill (> 1m), even if the fill is engineered, determine probable long-term settlements with the geotechnical consultant. Consider whether the facility function could accommodate resultant on-grade slab joint and mid-slab movements, and design as a structural slab to bridge over the backfill if necessary. Ensure that services piping allows for those settlements at junctions between such floor slabs / subgrades and fixed-structure supports.

.3 Where a buried utility enters a structure, provide an oversized sleeved waterproofed opening and/or a utility-support “bridge” to accommodate relative utility settlement and movement in conjunction with soil settlement and movement, especially in backfill areas.

.4 Coordinate with client City business unit or civic partner on content of recommended legal agreements between the client and adjacent property owners for pre-construction surveys of adjacent properties and possibly vibration monitoring in situations of temporary or permanent shoring for excavation, underpinning of adjacent structures or retaining walls adjacent to other properties, dynamic compaction of soils, or driven or dynamically compacted piles.

.5 Refer also to Civil section in these Guidelines for retaining walls.

8.6 Design Life

.1 Design life of new structures to be 75 years (“Long life” per CSA-S478), or 40 years (“Medium life” per CSA-S478) for parking structures not integral with longer-life structures, unless of a temporary or relocatable nature as coordinated with the client business unit or civic partner.

8.7 Contractor Design

.1 Contractor Design: Design of permanent non-proprietary components such as underpinning should be by the client’s design Engineer, who can best design for in-service loading and other conditions. However where design of shoring, soil anchors, falsework, connections, proprietary retaining walls, proprietary guardrail components etc. is specified to be by the contractor, the contractor is to submit design drawings, specifications and/or calculations signed and sealed by a Professional Engineer registered in the Province of Alberta to The City and The City’s or civic partner’s design consultant for review and comment.
Section 8 Structural

.2 The contractor’s design Engineer (and geotechnical engineer if applicable) is to perform site/shop reviews to ensure that construction satisfies their design requirements and standards such as CSA Standards CSA-S16 and CSA-S269.1, and shall copy their review reports to The City’s design consultant. Any changes made to the original design during construction are to be shown on submitted As-Built drawings.

8.8 Parking Areas

.1 Parking structures, and areas used for parking and vehicular access within, under or on buildings containing other occupancies, to be designed to CSA-S413 Parking Structures.

.2 Penetrating concrete sealers referred to in CSA-S413 clause A2.3 to be restricted to the Approved Product List for Sealers Used on Concrete Bridge Elements, latest edition, by Alberta Transportation (reference http://www.transportation.alberta.ca/Content/docType253/Production/BRSEALERS.pdf).

.3 For concrete reinforcement close to chloride-exposed surfaces refer to Materials section above.

.4 Required concrete permeability index prequalification tests to utilize ASTM C1202.

.5 The suggested establishment of contractor procedures for quality assurance per CSA-S413 Annex D.1.3, and responsibilities of designer, protection system specifier, prime consultant, contractor and owner per CSA-S413 Annex F, are to be formalized in the design specifications.

.6 Provide a draft copy of the Owner’s Maintenance Program to Corporate Engineering for review and comment.

.7 Non-structural building components in the splash zone near floor level to be corrosion-resistant.

.8 If considering the use of High Performance Concrete (HPC), meet the design recommendations for HPC contained in Guidelines for Bridges & Structures by The City’s Transportation Infrastructure - Bridges and Structures division.
8.9 Detailing

.1 Design floor expansion joints to permit unencumbered and smooth wheeled travel.

.2 Slope structure to match the major roof drainage slopes, where possible.

.3 Ensure that weeping tile system design, drawing and specification responsibilities are delineated between consultants and satisfied.

.4 Slab on grade jointing:

.1 To mitigate consequent slab cracking, slab-on-grade transverse and longitudinal shrinkage control joints to be spaced closer together where tied into previously-cast or non-shrinking components such as foundation walls / grade beams and trenches. Also consider moist-curing slab for minimum 7 days where crack widths will be a concern.

.2 Provide shrinkage control joint at edge of slab thickenings.

.3 A horizontal-smooth-dowel method of creating a horizontal slip joint is discouraged: inevitable variations off horizontal and perpendicular will negate movement.

.4 Control joint depth is to be 1/3 of slab thickness: ensure reinforcement depth allows for that.

8.10 Construction Inspection and Testing Agencies

.1 Design documents are to note that The City will engage construction inspection and testing agencies for quality assurance including:

.1 Professional geotechnical inspection of allowable bearing pressure for all footings, and inspection of soil anchors, MSE walls etc. designed by City’s consultants.

.2 Pile inspections. Part-time representative inspection is expected for typical bored cast-in-place piles: design, different pile type and/or soils may warrant full-time inspection.

.3 Plastic concrete sampling: scope per CAN/CSA-A23.1 / A23.2.

.4 Soil compaction.
.5 Structural steel connection inspections. Services expected are welding certificates confirmation, visual inspection of 100% of site and shop structural welds, ultrasonic inspection of 10% of site and shop structural welds, and visual inspection of 20% of metal deck connections. Design may warrant different levels/types of inspection.

.6 Pre-construction surveys and vibration monitoring of adjacent properties.

.2 The Contractor is to remain responsible for all quality control inspection and testing.

8.11 Antenna-supporting Towers and Structures - General

.1 These requirements apply to Site Licensees (leases) and to City-operated antenna supports on City-owned land and facilities.

.2 For these purposes, The City will mean Corporate Properties & Buildings (Land / Leasing) with copy of documents to Corporate Engineering.

.3 For antenna supports extending 15m or more above adjacent grade or roof, CSA Standard S37 Antennas, Towers, and Antenna-Supporting Structures is to apply in its entirety [ref. S37 1.2(b)].

.4 Unless confirmed otherwise in writing by The City, the Importance Factor for loading design and evaluation is to be taken as 1.0 [ref. S37 5.3].

.5 Specify provision of warning signage on any existing or new support not having climbing and safety devices compliant with the current Standard.

.6 For antenna supports of a height less than 15m, Items .4 and .5 above are to still apply, plus potentially other requirements of CSA Standard S37 as may be noted by The City.

8.12 Antenna-supporting Towers and Structures - New Supports

.1 Design of a new support to be carried out by an engineer who takes responsibility for the structural adequacy [ref. S37 3.4.1], with drawings or reports copied to The City under the engineer’s seal and signature.

.2 As part of design for a new support, an engineer is to confirm adequacy of any building or other structure that supports the antenna support [ref. S37 3.4.2], with confirmation copied to The City under the engineer’s seal and signature.
.3 Provide to The City a copy of the geotechnical investigation report prepared under the supervision of a professional engineer, for the support site [ref. S37 10.1.2.1].

.4 The engineer responsible for design to review or supervise review of installation of the support [ref. S37 11.12], with reports copied to The City.

.5 For antenna supports of a height less than 15m, Item .2 above is to still apply, plus potentially other requirements of CSA Standard S37 as may be noted by The City.

END OF SECTION
SECTION CONTENTS

9.1 Codes and Standards ... 9-1
9.2 General Mechanical Design .. 9-2
9.3 Design Criteria ... 9-4
9.4 Plumbing and Drainage ... 9-4
9.5 Fire Protection ... 9-6
9.6 Heating ... 9-6
9.7 Cooling ... 9-8
9.8 Supply Air Handling ... 9-9
9.9 Controls ... 9-11
9.10 Start-up and Testing ... 9-12
9.1 Codes and Standards

.1 New design, additions, upgrades and repairs to conform to or exceed the latest edition of the following codes and standards generally, plus those specifically referenced in following clauses:

.1 Alberta Building Code.
.2 Alberta Fire Code.
.3 National Plumbing Code.
.4 National Fire Protection Association (NFPA) including:
 a. NFPA 10 – Portable Fire Extinguishers.
 c. NFPA 14 – Installation of Standpipe and Hose System.
.5 City of Calgary Bylaws.
.6 Canadian Standards Association including:
 a. CAN/CSA-B52 – Mechanical Refrigeration Code.
 b. CAN/CSA-B139 – Installation Code for Oil Burning Equipment.
 c. CAN/CSA-B149.1 – Natural Gas and Propane Installation Code.
 d. CAN/CSA-B149.2 – Propane Storage and Handling Code.
.7 Underwriters Laboratories of Canada.
.8 Alberta Occupational Health and Safety Act:
 a. Ventilation Regulation.
 b. Noise Regulation.
.2 American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standards including:

.1 ASHRAE 52.2 - Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.

.2 ASHRAE 55 - Thermal Environmental Conditions for Human Occupancy.

.3 ASHRAE 62.1 - Ventilation for Acceptable Indoor Air Quality.

.5 ASHRAE 129 - Measuring Air Change Effectiveness.

.6 ASHRAE Handbooks.

.3 Industrial Ventilation: A Manual of Recommended Practice, American Conference of Governmental Industrial Hygienists.

.4 Sheet Metal and Air Conditioning Contractors Association (SMACNA) Standards.

.5 Model National Energy Code for Buildings (MNECB).

.6 The City of Calgary – Sustainable Building Policy.

9.2 General Mechanical Design

.1 Detailed Procedures to Be Followed By Consultants:

.1 At the preliminary design stage the consultant to provide the client business unit or civic partner Project Manager a schematic design brief as outlined in section 4.3.5 of this guideline. For small projects sketches to be provided showing:

a. The locations where the pipe and duct mains will be run

b. Ventilation and air distribution strategy

c. Heating / cooling equipment

d. Space control strategy

e. Equipment locations
.2 Heating/cooling load calculations and any other relevant design data including energy simulations to be submitted at the request of the client business unit or civic partner project manager for any new building construction, major renovations and retrofits.

.3 Coordination of Equipment: Ensure adequate clearances are maintained for servicing of all equipment.

.2 Energy:

.1 The building design, equipment, and systems to conform to, as a minimum, the mandatory provisions of the MNECB and ASHRAE 90.1.

.3 Metering:

.1 The City of Calgary Energy Management Office is to be consulted on the appropriate level of natural gas utility metering, and any thermal metering that may be required for each project. Sub-metering of natural gas utilities to various buildings or equipment shall be evaluated on a project to project basis.

.2 The City of Calgary Water Resources to be consulted on appropriate level of water utility metering that may be required for each project.

.4 Accessibility to Equipment:

.1 Provide sufficient access space for servicing, maintaining and removal of equipment and components (coils, exchangers, fans, motors, filters, etc.)

.2 Indicate access space required for equipment maintenance on drawings.

.3 Coordinate with Architect to provide access doors to concealed mechanical equipment for servicing access. Locate and size access doors such that all concealed items are accessible and so that body or hand entry (as required) is achieved.

.5 Hazardous Materials:

.1 Be aware of possible asbestos materials and surfaces and follow regulatory requirements. Refer to Section 12.1 of this guideline.
9.3 Design Criteria

.1 Design mechanical systems for typical office occupancies based on criteria set out below. Special buildings or areas within buildings may require different conditions than those outlined. Document these conditions and make allowances in the system design.

.2 Base heating design on outdoor ambient temperatures given in the Alberta Building Code. For Calgary the 2.5 % January Outdoor Design Temperature is -31C.

.3 Base cooling design on outdoor ambient temperatures given in the Alberta Building Code. For Calgary the 2.5% July Outdoor Design temperature is 29C dry bulb, 17C wet bulb.

.4 Minimum indoor environmental design requirements:

 .1 Indoor temperature (heating): 22C
 .2 Indoor temperature (cooling): 25C
 .3 Overall Ventilation Rate: as per ASHRAE Standard 62 (Relevant Version as noted in ABC or as approved by The City of Calgary)
 .4 Humidification; When required humidification is to range from 15%RH when outdoor air temperatures are -30C or less, to 40%RH when outdoor temperatures are 20C or more.

9.4 Plumbing and Drainage

.1 Domestic Water Service:

 .1 Provide domestic hot water re-circulating piping complete with balancing valves where hot water supply length exceeds 15m.
 .2 Provide backflow prevention that conforms to either The National Plumbing Code of Canada or the requirements of The City of Calgary, whichever is more stringent.
 .3 Domestic water piping to be type L copper. Solder for fittings to be lead-free. Grooved fittings not permitted on domestic water piping.
 .4 Domestic hot water recirculation lines to be type K copper.
 .5 Consider solar water heating technologies.
.6 Consider instantaneous water heaters as appropriate for the application.

.2 Sanitary Sewer Piping System:

.1 All below slab sanitary piping to be minimum 50mm Dia.

.2 Install trap primers as required by National Plumbing Code.

.3 Provide the necessary double compartment sumps as required to suit occupancy and use.

.3 Storm Drainage System:

.1 Provide a minimum of two roof drains per contained near-flat roof area, except a single drain may be provided for near flat roof areas not greater than 6 sq. meters, i.e. entrance canopies, elevator penthouses.

.2 If possible, avoid use of control flow drains. If installed, ensure Structural consultant allows for this load.

.3 For building surrounded by high foliage, consider 100mm as minimum size of roof drains.

.4 If possible, route storm drainage internally within the building and connect directly to the City storm sewer system. Avoid discharging flow to grade.

.5 If discharging storm water to grade, do not allow flow onto pedestrian or vehicle traffic areas where it could freeze and become a safety hazard or onto areas where it could cause erosion damage.

.6 Explore storm water harvesting opportunities and incorporate if practical and Triple Bottom Line goals are satisfied.

.4 Plumbing Fixtures:

.1 All new plumbing fixtures to adhere to The City of Calgary Low Water Use Fixture Bylaw as a minimum performance requirement.

.2 For water closet selection refer to recommendations listed on the Canadian Water and Wastewater Association website:

http://www.cwwa.ca/home_e.asp
9.5 Fire Protection

.1 General:

 .1 Where sprinkler system is to be installed, show as a minimum the following on
 the tender drawings:

 a. Location and type of sprinkler heads.
 b. Routing of main lines.
 c. Location of sprinkler tree.
 d. Location of fire pumps.
 e. Fire protection system schematic.
 f. Indication of type of sprinkler head on drawings: upright; pendant; with
 guard.

 .2 Show location and types of fire extinguishers to be installed.

9.6 Heating

.1 General: in large mechanical rooms containing natural gas burning equipment,
provide ventilation to control the room temperature within the temperature ratings of
the equipment.

.2 Boilers:

 .1 Provide boiler plant that allows for redundancy and extra capacity for pickup
 losses (if applicable) as well as future expansion. Typically two boilers, each
 sized to 60% of total heating design capacity satisfies this requirement
 however other configurations are acceptable given the proposed strategy is
 reviewed and approved by the client business unit or civic partner.

 .2 Utilizing alternative boiler setup and /or other heat sources is acceptable as
 long as the proposed heating strategy is reviewed and approved by the client
 business unit or civic partner.

 .3 Provide a minimum of two primary circulation pumps, sized for parallel pump
 operation.
.4 Provide contacts for Building Management System (BMS) control system (if building is BMS controlled) including boiler enable, burner firing rate, and flame failure alarm.

.5 Consider installing condensing boilers as appropriate.

.6 Establish capacities, arrangement, and number of boilers such that when any one boiler is out of service, the remaining boilers shall be sufficient to offset building transmission heat loss. Note that this may exclude heat for ventilation.

.7 Boilers to have fully modulating burner controls with high turn-down ratios.

.8 Boilers shall incorporate means for preventing heat losses through the boilers when they are not in operation, such as 3-way bypass valves or check valves that prevent the flow of heat carrying fluid through boilers that are not operating.

.3 Heating Distribution:

.1 Terminal units including reheat coils, fin tube radiation, and radiant heating panels to circulate hot water.

.2 Provide a separate glycol loop for the air handling system coils, separate from loop supplying fin tube radiation, radiant panels, and terminal reheat coils.

.3 Provide 50% glycol solution for heating coils in air handling units.

.4 Two pipe reverse return system preferred for heating water piping.

.5 Grooved fittings are not permitted on heating water piping.

.6 Include provisions for water treatment.

.4 Heating Terminal Units:

.1 Where perimeter radiation and reheat coil serve the same space, radiation to operate initially and in sequence to reheat coil.

.2 Each perimeter fin radiation zone to have isolating valves and control valves on supply side. On return side install balancing valve and isolating valve. Install air vents on high side of return. Provide access to all valves and accessories associated with the terminals.

.3 Provide means of isolation, balancing and flow measurement for equipment and major loop circuits.
9.7 Cooling

.1 General:

.1 Cooling system guidelines:

 a. Direct expansion refrigeration recommended when the cooling load is 80 tons or less. Provide hot gas bypass control on first compressor.

 b. Consider air cooled chiller, or evaporative cooling tower when cooling load is 80 tons and above. KW/ton and EER ratings of various cooling equipment options to be evaluated when making a decision on system selected.

.2 Provide chillers that allow supply water to be reset electronically.

.3 Consider variable flow pumping to conserve energy use.

.4 Include provisions to water treatment.

.5 Use outdoor air for free cooling when ambient temperature conditions permit.

.2 Sizing

 .1 Air Conditioning equipment to be sized based on the calculated block cooling load requirements and diversity.

 .2 Do not apply any safety factor when sizing cooling equipment.

.3 Refrigeration Equipment

 .1 Design refrigeration systems in conformance with CSA/CAN-B52 Mechanical Refrigeration Code.

 .2 HFC refrigerants to be utilized.

 .3 Compressors to have minimum 5 year warranty.

.4 Cooling Distribution: two pipe reverse return system preferred for cooling water piping. Grooved fittings are not permitted for cooling water piping.

.5 Air and water side economizer strategies are to be employed where possible.
9.8 Supply Air Handling

.1 General: Air Handling Systems to be complete with economizer cycle including 100% outside air for cooling as ambient conditions permit.

.2 Air Handling Equipment:
 .1 Air handling system to be complete with economizer cycle if applicable.
 .2 Provide air plenums with hinged, sealed access doors and lighting for inspection of each chamber. Access doors to be complete with lockable lever handles operable from both sides.
 .3 As a minimum provide air filters with minimum dust spot efficiency of 30% (MERV 8) based on ASHRAE 52.1. For hydronic systems provide summer/winter position filters. Consider MERV 13 filtration depending on the occupancy and/or if designated as an owner priority.
 .4 Do not utilize mechanical rooms as air plenums.
 .5 Cabinet panels to be: 18 gauge for air handlers supplying less than 10,000 L/S; 16 gauge for air handlers supplying more than 10,000 L/S.
 .6 Cabinet floor panels to be 16 gauge. Floor panels next to potentially wet areas to be non-slip.
 .7 Panels to be complete with 50mm thick insulation.
 .8 Consider Heat Recovery Ventilation equipment as suitable for the application.
 .9 Refrigerant coils with multiple compressors shall be alternate tube circuited in order to distribute the cooling effect over the entire coil face at reduced load conditions.
 .10 Bearings to be anti-friction ball, roller, self–aligning pillow block type bearings with heavy clamp lock as opposed to set screws. Bearings are to be selected for minimum L10 bearing life of 40,000 hours when operating at maximum catalogued class conditions. Consider L10 of 200,000hr bearings for critical and 24/7 applications.
 .11 Fan shafts: solid AISI C-1040, or C-1045 hot rolled steel accurately turned, ground and polished, and ring gauged for accuracy. All shafts must be dial indicated for straightness after the keyways are cut and straight as required. Shafts shall be sized for first critical speeds at least 1.43 times the maximum speeds of the fan.
.12 Fan wheels: blades shall be true lined, statically and dynamically balanced on precision electronic balancers. Each fan assembly shall be designed for critical speeds of at least 1.35 times the maximum speed of the fan.

.13 DX coil section, filter section, mixing section, heating coil section shall be provided with 22 gauge solid galvanized steel liner over insulated areas.

.14 Fan section to have 24 gauge perforated galvanized steel liner over insulated areas.

.15 For outdoor and exhaust air dampers utilize aluminum thermally insulated dampers with leakage characteristics of 25 L/s/m² at 1 KPa differential static pressure at -40°C. For return air dampers utilize non-insulated aluminum airfoil dampers with leakage characteristics of 52 L/s/m² at 1 KPa differential static pressure at -40°C.

.16 Disconnect switch enclosure for outdoor units shall be NEMA 4.

.17 Extended grease lines to be primed with grease at the factory.

.18 On large systems consider providing return fan in lieu of gravity relief.

.19 Provide 25mm birdscreen mesh for air openings at the air handling unit.

.20 Power cable within the air handling unit serving fan motors to be liquid tight.

.3 Humidification: to be provided as required to meet ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

.4 Natural Ventilation: consider natural ventilation strategies as deemed applicable and practical.

.5 Zoning: match areas to appropriate heating and cooling zones.

.6 Distribution:

.1 Ensure that proper air distribution is achieved through correct diffuser application, selection, and location in the ceiling grid.

.2 Take into account variable air volumes and tenant requirements so that adequate air circulation is achieved under all conditions.
.7 Variable Air Volume:

.1 On VAV systems use variable frequency drives on fan motors to modulate supply and return air volumes. VFD’s to be complete with electronic bypass on equipment that does not have a standby. Ensure VFD’s are complete with line input reactor, DC line inductance or similar means to limit input total harmonic current distortion to less than 7% at the drive input.

.2 Sequence heating elements (Perimeter fin tube radiation or reheat coils) and VAV boxes on the same temperature space sensor.

.3 Drawing schedule to provide minimum and maximum air volumes for boxes.

.8 Rooftop Units:

.1 If at all possible, air handling units to be installed in interior dedicated mechanical service rooms.

.2 Rooftop units to be installed on a roof curb that has a minimum 350mm height. For large units where an open structural frame support is required, provide a minimum of 1.0m clearance from the top of roof level to the underside of the equipment.

.9 Noise and Vibration Control:

.1 Locate rooftop equipment over non-critical areas.

.2 Provide acoustic and vibration isolation to all mechanical equipment.

9.9 Controls

.1 Provide a complete system of automatic controls for HVAC equipment. If possible provide automated control for terminal unit devices in addition to the main central equipment.

.2 All requirements of the Energy Management Control Systems (EMCS) to be provided by a single control contractor.

.3 Systems to be based on DDC/SAC with electrical devices where specified.

.4 EMCS to:

.1 control heating, ventilating and air conditioning systems.
.2 execute control strategies to minimize energy consumption.

.3 monitor and record mechanical systems performance.

9.10 Start-up and Testing

.1 Include a complete list and test report forms for all tests required in the specification. Identify which test needs the consultant engineer to witness and those by the commissioning agent if applicable.

.2 Contractor to conduct operating start-up to confirm that equipment and systems meet specified requirements after mechanical installations are completed and pressure tested and all systems are operational.

.1 Start-up of air systems
 a. Start-up fans, coils circulators, humidifiers, exhaust air systems and interlocked cooling systems.
 b. Balance in accordance to testing, adjusting, and balancing requirements.

.2 Start-up of hydronic systems
 a. Pressure test piping systems
 b. Start-up pumps, boilers, chillers, and all ancillary equipment.
 c. Balance in accordance to testing, adjusting, and balancing requirements.
 d. Check distribution system for fluid noise and pump noise.

.3 Start-up of plumbing systems
 a. Pressure test
 b. Flushing and Cleaning: Flush entire system for 8 hrs. Ensure outlets flushed for 2 hrs. Let stand for 24hrs, then draw one sample off longest run. Submit to testing laboratory to verify system is clean. Let system flush for additional 2hrs, then draw another sample for testing.
c. Disinfection:

- Supply materials and test kit to carry out disinfection as follows:
 - Fill piping system and tanks with chlorine/water solution with a strength of at least 50 mg/L. Ensure pipe is full and no air pockets remain.
 - Leave solution in piping system for 24 hours, while maintaining a pressure of 175 kPa.
 - After 24 hours sample and test the chlorine solution. If the chlorine residual is at least at 25 mg/L, the disinfection will be considered successful. Flush chlorine solution from the system. Protect against contamination of the disinfected system.
 - If the chlorine residual is less than 25mg/L, flush the system, clean any deleterious material, re-flush and disinfect again. Repeat until satisfactory.
 - If in the opinion of the mechanical consultant any component of the potable water system becomes contaminated after disinfection, it shall be flushed and disinfected again at no additional cost.
 - Obtain water sample off longest run. Test in approved laboratory for bacteriological analysis and provide certification that all samples are suitable for human consumption prior to interim-occupancy inspection.
 - Upon completion provide laboratory test reports on water quality for mechanical consultant approval.

.4 Manufacturer Start-up: include for and coordinate manufacturer start-up of boilers, air handling units, chillers, cooling towers, and condensing units, water chemical treatment.

.3 All tests forms required as per specifications to be recorded on the test report forms and submitted to the consultant.

END OF SECTION
SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Codes and Standards</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2 Site Electrical Services</td>
<td>10-1</td>
</tr>
<tr>
<td>10.3 Service Distribution, Sub-Distribution and Panelboards</td>
<td>10-2</td>
</tr>
<tr>
<td>10.4 Emergency Power Systems</td>
<td>10-8</td>
</tr>
<tr>
<td>10.5 Conduit & Wiring</td>
<td>10-9</td>
</tr>
<tr>
<td>10.6 Wiring Devices & Boxes</td>
<td>10-11</td>
</tr>
<tr>
<td>10.7 Lighting</td>
<td>10-11</td>
</tr>
<tr>
<td>10.8 Emergency & Exit Lights</td>
<td>10-13</td>
</tr>
<tr>
<td>10.9 Fire Alarm System</td>
<td>10-14</td>
</tr>
<tr>
<td>10.10 Security System</td>
<td>10-14</td>
</tr>
<tr>
<td>10.11 Public Address System</td>
<td>10-15</td>
</tr>
<tr>
<td>10.12 Telephone System</td>
<td>10-15</td>
</tr>
<tr>
<td>10.13 Computer Network System</td>
<td>10-15</td>
</tr>
<tr>
<td>10.14 Cable Television System</td>
<td>10-15</td>
</tr>
<tr>
<td>10.15 Lightning Protection System</td>
<td>10-16</td>
</tr>
<tr>
<td>10.16 Electrical Start-up and Testing</td>
<td>10-16</td>
</tr>
</tbody>
</table>
10.1 Codes and Standards

.1 New design, additions, upgrades and repairs to conform to or exceed the latest edition of the following codes and standards generally, plus those specifically referenced in following clauses:

.1 Canadian Electrical Code Part 1.
.2 Alberta Building Code.
.3 National Fire Code.
.4 National Fire Alarm Code.
.5 Underwriters Laboratories of Canada
 a. Installation of Fire Alarm System.
.6 Canadian Standard Association
.7 Illuminating Engineering Society of North America.
.8 Institute of Electrical and Electronics Engineers.
.10 The City of Calgary – Sustainable Building Policy.

10.2 Site Electrical Services

.1 Consultant to coordinate with the electrical, cable, fibre, and telephone utilities providers for location and routing of these services to the facility.

.2 Avoid crossing any utility service lines unless absolutely deemed necessary.
.3 Consultant to contact electrical service provider to determine service availability, connection costs (to be included in a cash allowance), and date that permanent service can be made available.

.4 Contractor to provide temporary power and absorb all electrical utilities costs until project is turned over to the Owner.

.5 Power, telephone and cable television services to, unless impractical, be routed underground from the Utility connection point to the building service equipment.

.6 Provide one (1) spare 100mm secondary feeder conduit from the exterior pad-mount transformer to the electrical room inside the facility, capped off.

.7 Provide one (1) spare 100mm conduit for future communications service provider.

.8 Select service voltage according to the majority of load requirements, 120/208 volt or 347/600 volt, 3 phase, 4 wire.

10.3 Service Distribution, Sub-Distribution and Panelboards

.1 Size the main distribution panel 25% above the combined current and anticipated future expansion design ampacity.

.2 Provide for a maximum utilization of 60% for main and sub-distribution circuit breakers to total panel spaces available.

.3 Use circuit breakers for all main and branch circuit protective devices.

.4 Ensure adequate fault duty ratings of all switchgear, panels, MCC’s and overcurrent devices, verified by fault calculations.

.5 Ensure coordination of overcurrent and ground fault devices:

 .1 Conduct preliminary coordination analysis complete with consolidated time-current characteristic curves and single line diagram showing utility fault level and protection, main incoming and feeder devices.

 .2 Provide final coordination analysis documents before completion of construction to ensure proper functional coordination of all devices and include the final coordination documents to the O&M Manual.
.6 For new as well as modification and addition of Corporate Properties and Buildings owned and operated buildings, specification shall call for Arc Flash Hazard Analysis based on CSAZ462 and IEEE 1584 for all new and existing distribution equipment at the facilities. For other city owned or funded buildings, consult the owner for Arc Flash Analysis requirement. When performing the Arc Flash Analysis and the warning labelling, the following rules to be followed,

.1 The Arc Flash Analysis shall be done by the manufacture of the power distribution system, any other third party firm is not acceptable.

.2 For modification and addition projects, the analysis shall be based on current power distribution configuration of the whole facility.

.3 The flash protection boundary and the incident energy shall be calculated at all significant locations in the electrical distribution system (switchboards, switchgear, motor-control centers, panelboards, busyway and splitters) where work could be performed on energized parts;

.4 The Arc Flash Analysis shall include all significant locations in 240 volt and 208 volt systems fed from transformers equal to or greater than 125 KVA where work could be performed on energized parts;

.5 Based on Arc Flash Analysis, a 3.5 in. X 5 in. thermal transfer type warning label of high adhesion polyester to be provided and installed for each work location analyzed;

.6 All labels shall be based on recommended or existing overcurrent device settings and will be provided after the results of the analysis have been presented to the owner and after any system changes, upgrades or modifications have been incorporated in the system;

.7 The label shall include the following information, at a minimum:

- Location designation
- Nominal voltage
- Flash protection boundary
- Hazard risk category
- Incident energy
- Working distance
• PPE category and description including glove rating
• Limited approach distance
• Restricted approach distance
• Prohibited approach distance
• Engineering report number, revision number and issue date

.8 The manufacturer shall provide one day of Arc Flash Safety training which shall include

• Proper use of the system analysis data
• Interpretation of hazard labels
• Selection and utilization of personal protective equipment
• Safety work practices and procedures

.7 City of Calgary Energy Management Office to be consulted for electricity metering and/or submetering requirement for corporate owned and operated infrastructures. Consider providing panel-mounted microprocessor-based digital AC metering device for all services 400 Amperes and over, with:

.1 Meter to display true RMS values for phase voltage (line to line and line to neutral), phase currents, kVA, kVAR, kW, PF, Hz, KWhr, kWd and kVAd.

.2 Metering to be field programmable via front key pad and RS232 and RS485 port.

.3 Meter to have two programmable dry contacts.

.4 Output and interface software for tie to building automation system; capacity for recording, load shed and alarm set points.

.5 Sizing of instrument transformers such that the initial design full load is approximately 60% of rating.

.6 Provision of PT test blocks, if required, and CT test blocks for each meter.

.8 Provide a customer service utility meter in a separate cabinet.

.9 Provide lifting equipment for all industrial-type air circuit breakers and high voltage switches.
.10 Provide all floor-mounted equipment with a housekeeping pad except for roll-out style switchgear.

.11 Locate main electrical distribution equipment in a separate room. The room to be large enough to accommodate electrical equipment and have space to accommodate future needs. The room to be adequately ventilated and illuminated and located as close as practical to major electrical loads. Provide legible single line diagram which shall be approved by the design Engineer prior to installation in glass frame in main electrical room and generator room is applicable.

.12 Do not locate main service and distribution equipment in mechanical, storage or janitor rooms except for MCC’s in mechanical rooms.

.13 Do not locate distribution transformers in ceiling spaces.

.14 Coordinate transformer heat removal with mechanical consultant.

.15 To limit fault current available on the secondary side, maximum transformer size not to exceed 1000 kVA.

.16 Select low temperature rise transformers, using high temperature insulating materials to achieve long life and low losses (e.g., Class 220°C, 150°C temperature rise over a 40°C ambient). Provide three phase transformers with delta-wye connection and accessible voltage taps. Rate transformers to accommodate the harmonic currents and voltages present for the loads being supplied. Transformers may be K factor rated or may be of the phase shifting type designed to mitigate harmonics.

.17 Provide flexible conduit for final connection to transformer. Provide vibration isolators for transformers located on floors or suspended from upper floors.

.18 Make provisions for fan cooling on dry type transformers in excess of 750 kVA. Size transformers for calculated capacity without fan-cooling.

.19 Panelboards to be distributed uniformly about the facility sized on the basis of the known and anticipated loads in each area of the facility.

.20 Panelboards to be located in storage rooms, mechanical rooms and electrical rooms. Where these rooms are not available locate panelboards in corridors and provide with a lockable cover. Do not locate panels behind doors that open in the direction of the panels.

.21 Correct power factor to at least 95% where normal loading yields a power factor of less than 90%.
.22 Consider correction capacitors for motors 10 kW and larger and group motors smaller than 10 kW where total motor load is 50 kW or larger.

.1 Locate capacitors close to the motor or group of motors, preferably downstream of starters.

.2 Where switchable capacitor banks are used, take the following precautions:
 a. First in, first out switching.
 b. Provide time delay between switch steps.
 c. Prevent overcorrecting and cycling.

.23 Conduct harmonic analysis and, where necessary, provide harmonic detuning.

.24 Identify non-linear loads including: pulse mode power supplies (typically found in personal computers, photocopiers, fax machines, printers, etc.), UPS, rectifiers, variable frequency drives and electronic ballasts. Determine the effects of these loads on the power distribution system.

.25 Provide harmonic filtration, either integral with the equipment or separately, to limit total current harmonic distortion from each piece of equipment to less than 15%. Limit the harmonic distortions to comply with the current edition of IEEE 519.

.26 Provide transformer isolation between large harmonic generating loads and the balance of the distribution system.

.27 Provide surge protection in the following manners:
 .1 Install surge suppression on utility incoming mains.
 .2 For areas containing a large group of electronically sensitive loads, provide surge protection on panelboards serving the area.
 .3 Coordinate surge protection devices within the same power distribution system.

.28 Provide modular group assembly motor control centres (MCC’s) for three phase motor starters.
 .1 Motor control centres to be complete with:
 a. Standardized central wiring extended to terminal strips in control terminal section.
 b. Copper bussing.
c. Combination magnetic starters, minimum size 1.

d. 20% spare spaces.

e. Adjustable time delay relays for start–up on motors 5kW and larger where this feature is not available through building automation system.

f. Individual control transformers in each starter cell.

g. Auxiliary contacts for interlocking controls.

.2 Do not use fuses for individual motor overcurrent protection.

.3 Provide three phase motor starters with three overload protection elements.

.4 Provide single phase protection for all three phase motors either by relaying, differential overloads or Building Automation shutdown.

.5 Provide time delay on speed change for 2 speed starters.

.6 Provide space on back panel in starter for Building Automation current sensors.

.29 Where there is a three phase service, provide motors larger than 0.37 kW as three phase units, and motors 0.37 kW and smaller as single phase 120 volt units.

.30 Provide control relays in MCC control terminal section for automated control of single phase motors where required.

.31 Coordinate motor sequential starting with building automation or controls.

.32 Variable Frequency Drives to be of pulse width modulation type. Provide VFD’s complete with harmonic distortion line filters with limit total harmonic current distortion to less than IEEE 519 Standard requirements where the drive terminals are the point of common coupling, but in no case more than 15%. Select drives with proven maintenance capabilities. Coordinate motor selection with mechanical to ensure inverter duty motors are provided. Provide output reactor to limit rise time to suit motor type and lead length. Locate drives within 7 meters of load.

.33 Provide electrical single line diagrams, as part of the Contract Documents, indicating the following:

.1 Configuration, type, voltage and current ratings of switchgear, transformers,

.2 Panelboards and motor control centres (MCC’s).

.3 Type, size, amperage ratings of services and feeders.
.4 Type, frame size, trip size, interrupting rating of all overcurrent protective devices.

.5 Available fault current at all switchgear, switchboards, panelboards, transformers secondary, MCC’s and overcurrent devices.

.6 Type, size and current ratings of services and feeders.

.7 Connected load at all switchgear, switchboards, panelboards and MCC’s.

.8 Anticipated demand load at all switchgear, switchboards, panelboards and MCC’s.

.9 Service and distribution grounding.

.34 Provide copies of “as-built” single line diagrams as part of the Operating and Maintenance Manuals.

.35 Provide copies of “as-built” single line diagrams framed and hung in each major electrical room with the equipment in the room highlighted.

10.4 Emergency Power Systems

.1 Make standby battery provisions for:

 .1 Fire alarm system.

 .2 Communication systems.

 .3 Switchgear station power supply, if applicable.

 .4 Engine-generator start-up.

 .5 Systems or equipment which requires uninterrupted service.

 .6 Emergency lights and exit signs (where emergency generator is not provided).

 .7 Gas shut off solenoid valves.

.2 Maintain battery operating ambient temperature above 20°C.

.3 Provide battery chargers with bulk charge, overcharge, protection and float charge features.
.4 Provide heavy duty lead–acid, maintenance free, valve gated sealed batteries.

.5 Where emergency generator is provided the following requirements apply:

.2 Comply with CAN/ULC0S524, Standard for the Installation of Fire Alarm Systems (3.2.2), with respect to emergency generation.

.3 Provide dedicated indoor, climate-controlled, fire-rated room. Locate generator room away from noise sensitive areas and preferably at grade level. Do not locate room below grade or where access for the removal of equipment is impeded.

.4 Exclude unrelated electrical and mechanical equipment from generator room.

.5 Provide vibration isolation for generator control panel or remote mount from generator set skid.

.6 Locate transfer equipment and main emergency distribution in close proximity to (but not within) emergency generator room.

.7 Where feasible, provide wired glass view between switchgear and generator room.

.8 Make provisions for connection to load bank to facilitate annual full load testing; size only for additional required load.

.6 Size generator for peak demand loads plus 25% spare for identified expansion, if applicable.

.7 Provide automatic transfer switch. Provide time delay or in-phase monitoring in transfer scheme to prevent motor damage upon transfer to utility power. Provide time delay between start-up of each motor over 5 kW on emergency power after transfer to emergency power, starting largest motor first.

10.5 Conduit & Wiring

.1 Provide underground service entrance in duct bank with steel reinforced concrete encased PVC or FRE duct. Provide transition at foundation wall, manholes, etc., with rigid steel conduit.
.2 Specify all A.C. and D.C. wiring to be installed in conduit or wireway (except where NMD90 and AC90 cables are used). Network, security, and telephone cabling also to be installed in conduit or cable tray where applicable.

.3 Exposed conduit not accepted. All conduits must be concealed except in service areas where otherwise approved by the owner.

.4 Provide conduit systems (power, communications, network, etc.) to a point of anticipated future expansion when applicable. Label the purpose of conduit at junction box where conduit terminates.

.5 Provide three (3) 27mm conduit stub-outs from all power, communication and protection systems recessed panels to junction boxes just above ceiling level for future use.

.6 Record exact routing of conduit runs in floor slabs. Do not loop through to downstream outlets.

.7 Where conduit is used in ceiling plenums, use steel EMT: do not use FT4 low spread rated PVC conduit.

.8 Provide ventilated cable tray for low tension systems, Class C1, ladder type. Tray to consist of open top cable tray with minimum dimensions of 450 mm wide x 100 mm deep galvanized steel. Support cable tray from the building structure at 3 meters on centre. Where cable tray passes through fire rated walls, provide totally enclosed tray for a distance of 600 mm on each side of the wall.

.9 For low tension systems, provide conduit for final drops in finished walls from cable tray in ceiling space.

.10 Size feeders for a maximum 2% voltage drop from main distribution to branch circuit panelboards under rated full loads.

.11 Generally, use copper conductors for feeders and branch circuits. Panelboard, MCC and Distribution Board feeders larger than #4/0 may be aluminium alloy. Use copper conductors with RW90 X-Link or THHN insulation. Minimum size of branch circuit wire to be #12 AWG. Minimum size of parallel conductors shall be #1/0. Conductor length for parallel conductors to be identical.

.12 Provide a 100% rated neutral and bonding conductor with all feeders.

.13 Use separate neutrals or increase size of neutral of branch circuits where circuits are dedicated for computer equipment loads including office personal computers.

.14 Avoid the use of non-metallic sheathed cables, except for buildings entirely of combustible construction.
.15 Use AC-90 cable only in short lengths for final connections to luminaires and similar equipment. Provide sufficient length of flexible drop to luminaires to enable unit relocation 2 meters in any direction. Drops are to occur from junction box on structure to each luminaire.

.16 Size branch circuit conductors to avoid excessive voltage drops. Indicate conductor sizing in design documents.

.17 Wiring of power and low voltage devices, even in an existing building, are under no circumstances to be installed or remain in the same conduit.

.18 For all major equipment such as power panels, use continuous feeder runs (i.e. no spliced sections). For existing installations with upgrades, prior approval required from the owner if non-adherence is necessary.

.19 Use Liquid-tight Flexible Conduit as raceway for final connection to all motor terminal boxes, pipe mounted and other devices subject to movement or water, minimum length to be 460mm plus 4 times and conduit diameter. Provide a separate ground wire within conduit, bond to motor frames and system ground.

10.6 Wiring Devices & Boxes

.1 Provide 20/15 amp service outlets in the corridors at approximately 15m intervals.

.2 Use specification grade receptacles in all locations.

.3 Identify all receptacles as to panel and circuit number on clear plastic background with black lettering affixed to top of device cover plate.

.4 Determine the extent and severity of electrical service disturbances including voltage sags, surges, short term and long term transients and outages. Consult with the Utility to determine the likely incidence of these disturbances.

.5 Identify electronic equipment and systems likely to be affected by these disturbances and the extent of protection necessary for normal operation.

10.7 Lighting

.1 Lighting design levels to be per latest IES standards.
.2 Design to maximize the energy efficiency of lighting systems. Design in accordance with the *Model National Energy Code of Canada for Buildings*.

.3 Design to minimize direct and reflected glare.

.4 Fluorescent fixtures to be the standard in most interior areas except where otherwise specified. Use T8 lamp technology and electronic ballasts for these fixtures.

.5 T-bar ceiling fluorescent fixtures to be "imperial size", with lay-in lenses.

.6 Provide a design report which includes a schedule describing each typical area, luminaire, lighting source, load (W/m²) and design lighting levels. Upon project completion add field measured levels to the report.

.7 Direct/indirect systems recommended for office, conference and training area lighting where ceiling heights and finishes permit. These systems should have at least 30% direct component.

.8 Only use the task-ambient approach in office spaces where work surfaces and task orientations are predetermined.

.9 Use diffuser with minimum 3.3 mm (0.125”) thickness in metal frame for flat lens larger than 1,220 mm x 305 mm.

.10 Only use acrylic, polycarbonate or glass as a material for diffusers.

.11 Limit use of HID sources to indirect lighting systems and high mounting heights. Use of high bay T5 high output lamps recommended for warehouse and arena areas with high ceiling mounting heights.

.12 Generally, use 1220 mm (imperial) fluorescent, F32T8 lamps with 3500°K color temperature. Do not use “U” lamps.

.13 Use compact fluorescent luminaires where the 1,220 mm linear fluorescent source is not aesthetically acceptable.

.14 Use of incandescent sources is not recommended and can only be used for accent or display functions.

.15 Use energy efficient, instant start, electronic fluorescent ballasts. Select electronic ballasts with total current harmonic distortion below 12% and power factor of 95% or better.

.16 Use daylighting wherever feasible and provide detailed information in design development report.
.17 Provide an outline of how daylighting is to be integrated into the facility, how automatic control is achieved and how glare is controlled.

.18 Use photocell sensors and low voltage relays to individual lamps or dimmable ballast to control fixtures in areas where daylight may supplement the artificial lighting. Include low voltage Auto/Off control switches.

.19 Provide occupancy sensor for lighting control in individual rooms where lighting is not required on a continuous basis including offices, storage rooms, service rooms, washrooms, training rooms, fitness rooms, boardrooms and meeting rooms. Use motion sensor controlled lighting for open areas where feasible.

.20 Install photocell and occupancy sensors with 1000mm of slack wires to permit subsequent relocation without the need for rewiring.

.21 In rooms where audio/visual presentations are likely, provide a second level of lighting through switching a small number of luminaires separately from the main lighting.

.22 Use low voltage switching to 347 volt distribution and in large areas that require central control or multiple switching (hallways, corridors and multi purpose open areas). Where it is justified, low voltage switching systems may be considered for energy management. Low voltage lighting control to interfere with BMS system or allow future connection to BMS system.

.23 Do not use breaker switching.

.24 Minimize voltage drop for low voltage lighting system:
 a. Using heavier gauge cable;
 b. Shorten cable runs;
 c. Use lower wattage lamps;
 d. Use fewer luminaries on each run;
 e. Use multiple transformer;

10.8 Emergency & Exit Lights

.1 Provide emergency and exit lights as required by code in all egress paths, stairwells, mechanical rooms, washrooms, and electrical rooms.

.2 Use high brightness LED type exit lights.
10.9 Fire Alarm System

.1 Design and install the system to latest CAN/ULC-S524 Standard for Installation of Fire Alarm Systems.

.2 Verify system to latest CAN/ULC-S527 Standard for Verification of Fire Alarm Systems.

.3 Review design of fire alarm system with local authority.

.4 Select system vendors with local support. Do not use proprietary equipment.

.5 Provide a programmable intelligent fully addressable supervised single stage; class ‘A’ fire alarm system for all facilities. Provide two-stage system for facilities that require voice evacuation system in accordance with the Alberta Building Code.

.6 Provide fire alarm system as a stand-alone system, independent of building control or security systems.

.7 Annunciate emergency generator run and trouble modes where applicable.

.8 Provide magnetic door hold-open devices on circulation doors where smoke or fire separations are required.

.9 Provide fire-rated wiring installation for system communications trunks where they are used.

.10 Provide wiring diagram on inside of each fire alarm control panel door. Clearly identify wiring at all panels and junction boxes identifying initiating loops, addresses and signal circuits.

.11 Coordinate duct detectors with mechanical to ensure air velocities are compatible with detectors.

10.10 Security System

.1 Provide electronic security systems as required by building owner to enhance physical and dynamic security. Primary security is by physical security provisions in the building design and the dynamic security brought about through staff procedures and circulation.

.2 Review security risks with administration and determine needs for each individual project.
.3 Provide emergency power supply to security systems and battery backup.

.4 Provide conduit and wire to all exterior doors for monitoring and motion detectors in entranceways, corridors, stairwells and administration office areas.

.5 Provide conduit and wiring for remote monitoring transmission devices to send security and fire signals to a remote monitoring company. Signals to include both trouble and alarm signals.

10.11 Public Address System

.1 Provide a public address system capable of communicating throughout the facility for emergency and other purposes using telephones and the public address speaker system.

10.12 Telephone System

.1 Provide a telephone outlet box and conduit system which meets the needs of the Owner.

10.13 Computer Network System

.1 Provide a computer network outlet box and conduit system ready for ITS Computer and Network Systems to install networking equipment, cabling and outlets as required by the Owner.

.2 Provide wiring terminal closets and equipment rooms to accommodate data and communications systems in accordance with CAN/CSA T529, EIA/TIA 568 Standard.

10.14 Cable Television System

.1 Design cable television distribution system for signal strength 6 dB mV to 14 dB mV at each outlet.

.2 Connect utility cable television service to cable television distribution system. If cable television service is not available at present, ensure that it can be connected when service is available.
10.15 Lightning Protection System

.1 Provide lightning arrestors on all services supplied from an overhead line.

.2 As a guideline, provide lightning protection as determined by the latest CAN/CSA-B72-M87–Installation Code for Lightning Protection System standard.

.3 Do not provide protection for adequately grounded metal buildings.

.4 Ensure adequate treatment for all envelope penetrations such as generator exhaust piping, lightning down conductors and points and service masts.

10.16 Electrical Start-up and Testing

.1 Include a complete list and test report forms for all tests required in the specification. Identify which test needs the consultant engineer’s to witness.

.2 Basic electrical start-up and testing:

 .1 Test and check all portions of the electrical systems for satisfactory operation.

 .2 Before energizing any portion of the electrical systems:

 a. Perform megger tests on all feeder conductors.

 b. Torque all bus connections to manufacturer’s requirements and seal with red lacquer.

 c. Measure ground resistance of ground grids and wiring devices with earth test megger to verify compliance with CSA C22.2 No. 0.4-M1982 and Canadian Electrical Code, and submit test results to Consultant.

 d. After energizing as many loads as possible, test load balance on all feeders at distribution centres, motor control centres and panelboards. If load unbalance exceeds 15%, reconnect circuits to balance loads and revise panelboard directories and wiring identification accordingly.

 e. Test and calibrate all protective devices on site prior to energizing to ensure proper operation as determined by final coordination studies.
f. Prior to starting motors, confirm motor nameplate data with motor starter heater overloads, verify rotation, ensure disconnect switches are installed and confirm labelling of motors, disconnects and starters.

g. Functional test of all lighting switches, luminaires, dimmers and lighting control equipment such as photocells and time clock settings.

h. Check operation of all battery operated emergency lighting units, exit lights and connection of exit lights to emergency lighting units as specified.

i. Test operation of UPS.

j. Factory and field test standby power generation systems.

k. Complete fire alarm verification as per current addition of CAN/ULC-S527 Standard for Verification of Fire Alarm System.

l. Test signal strength at each cable television outlet and provide verification that signal levels meet specified requirements.

.3 All tests to be recorded on the test report forms and submitted to the consultant.

END OF SECTION
SECTION CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Codes and Standards</td>
<td>11-1</td>
</tr>
<tr>
<td>11.2 Architectural</td>
<td>11-1</td>
</tr>
<tr>
<td>11.3 Mechanical</td>
<td>11-1</td>
</tr>
<tr>
<td>11.4 Electrical</td>
<td>11-3</td>
</tr>
<tr>
<td>11.5 Structural</td>
<td>11-3</td>
</tr>
</tbody>
</table>
11.1 Codes and Standards

1. New design, additions, upgrades and repairs to conform to or exceed the latest edition of the following codes and standards generally, plus those specifically referenced in following clauses:
 1. ASHRAE; Applications Handbook; Sound and Vibration Control Chapter

11.2 Architectural

1. Consult with the client business unit or civic partner on rooms where speech privacy, sound isolation, background noise, or reverberation noise is critical.
2. Develop a floor plan so that noise-sensitive spaces are not next to high noise generating areas. Consider both vertical and horizontal adjacencies.
3. Floor Construction: evaluate the need for a floating concrete floor to isolate loud equipment in mechanical areas. The engagement of an acoustic consultant is recommended to make an evaluation on the level of mechanical noise, and provide a design that attenuates the developed noise.

11.3 Mechanical

1. Design mechanical systems to provide background Room Criterion (RC) noise levels as follows.
 1. Auditorium: 20 maximum.
 4. Enclosed office: 30-35.
 5. Open-plan areas, library, cafeteria, reception: 35-40.
.2 Ducts, Terminal Units, Silencers:

.1 Whenever possible, design the mechanical duct system such that main high and medium velocity ductwork is located above low occupancy areas such as corridors and service spaces.

.2 Do not locate exhaust fans or fan coils directly above meeting rooms or sound-sensitive areas. Provide acoustic lined duct as required.

.3 Avoid placing rooftop equipment over noise-sensitive areas. Provide details describing acoustic treatment, duct configuration and roof penetration seals for any rooftop installations.

.4 Select duct silencers with low static pressure losses.

.5 Locate balancing damper as close to branch takeoff from main as possible.

.6 Use flexible connections between fans, plenums, and all related ductwork.

.7 Select grilles and diffusers such that the combined noise from all devices in a room meets the design criteria.

.3 Plumbing Noise:

.1 Ensure sleeves are provided for piping that penetrates walls. Seal space between pipe and sleeve with caulking.

.2 Install water hammer arrestors adjacent to quick acting solenoid valves.

.4 Vibration Isolation:

.1 Use the latest ASHRAE Application Handbook as a guide for selecting vibration isolation of mechanical equipment.

.2 Provide vibration isolators for all pipe hangers.

.3 Use flexible connectors on pumps that require isolation from piping or as recommended by the pump manufacturer.

.4 Use flexible connections between fans, plenums, and all related ductwork.
11.4 Electrical

.1 Transformers:
 .1 Avoid locating transformers within or above noise-sensitive areas.
 .2 Provide vibration isolators for transformers located near occupied spaces.
 .3 Provide flexible conduit for connections to the transformer.

11.5 Structural

.1 Mechanical room floors to be minimum 130mm thick concrete, to minimize structural vibration problems.
.2 Provide 100mm thick concrete housekeeping pad for major mechanical equipment.
.3 Design structural steel framed floors to prevent transient footstep-induced vibration from exceeding the annoyance threshold. Refer to CISC Handbook for Steel Construction – Appendix G Guide for Floor Vibration.
.4 Ensure rooftop mechanical equipment is located on a stiff portion of roof structure to avoid resonance problems.

END OF SECTION
SECTION CONTENTS

12.1 Environmental / Hazardous Materials .. 12-1
12.1 Environmental / Hazardous Materials

.1 Where a hazardous materials audit is not available or does not exist, contact the client business unit or civic partner prior to starting detail design or any destructive investigation.

.2 Where any existing hazardous materials are not normally accessible by staff or public, and where they are undamaged and not friable, they are to be recorded and left in place. If they are accessible, damaged or friable, the client business unit or civic partner may decide to encapsulate them. Where they will be disturbed during an upgrade or renovation, or where they may pose a hazard to staff or trades performing normal operating maintenance, those materials are to be removed in accordance with regulations and recognized safe practices: coordinate with the client business unit or civic partner as to whether to include removal in project scope.

END OF SECTION
SECTION CONTENTS

13.1 Architectural and Interior Space Planning..........................13-1
13.1 Architectural And Interior Space Planning

.1 A Building Code Analysis is to be included on design drawings, including classifications and fire separations.

.2 Fall Protection: coordinate with the client and building operator on whether there is a preference for interior (e.g. hatch) versus exterior (e.g. ladder) roof access, and whether tie-off points will be required.

.3 Parking facility design is to take into consideration the Canadian Parking Association Technical Bulletins including Parking Facility Planning and Design Guidelines, Parking Facility Maintenance Manual, Revenue Control for Parking Facilities, and Parking Facility Security.

.4 New construction or renovations to commercial office spaces to adhere to the Corporate Properties & Buildings - Space Planning Standards and Planning Guidelines.

.5 Follow City of Calgary “Access Design Guidelines”.

END OF SECTION
Questions and comments on these guidelines are welcome and should be referred to:

<table>
<thead>
<tr>
<th>Role</th>
<th>Contact Name</th>
<th>Phone No.</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager, Corporate Engineering</td>
<td>Peter Wilson</td>
<td>(403) 268-3221</td>
<td>peter.wilson@calgary.ca</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Cheryl Harmsworth</td>
<td>(403) 268-3222</td>
<td>cheryl.harmsworth@calgary.ca</td>
</tr>
<tr>
<td>Structural & Building Envelope</td>
<td>Glenn Harris</td>
<td>(403) 268-2043</td>
<td>glenn.harris@calgary.ca</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Marco Mazzolani</td>
<td>(403) 268-1998</td>
<td>marco.mazzolani@calgary.ca</td>
</tr>
<tr>
<td>Electrical</td>
<td>Cathy Wu</td>
<td>(403) 268-5717</td>
<td>cathy.wu@calgary.ca</td>
</tr>
<tr>
<td>Energy Management Office</td>
<td></td>
<td>(403) 268-5619</td>
<td>emo@calgary.ca</td>
</tr>
<tr>
<td>Other</td>
<td>Glenn Harris</td>
<td>(403) 268-2043</td>
<td>glenn.harris@calgary.ca</td>
</tr>
</tbody>
</table>

END